Serveur d'exploration Chanson de Roland (version 6)

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Relationships between linear and nonlinear shear response of polymer nano-composites

Identifieur interne : 000430 ( Main/Exploration ); précédent : 000429; suivant : 000431

Relationships between linear and nonlinear shear response of polymer nano-composites

Auteurs : Hojjat Mahi Hassanabadi [Canada] ; Denis Rodrigue [Canada]

Source :

RBID : ISTEX:192632C3A858FFEC31E626557CBF0B7916951A03

English descriptors

Abstract

Abstract: Rheological analysis was used to understand the structure–property relations of polymer nano-composites based on ethylene vinyl acetate. Two geometrically different nano-particles (sphere of CaCO3 and platelet of montmorillonite) having the same energetic attractions with ethylene vinyl acetate were studied for concentrations between 2.5 and 15 wt%. Three phenomena were studied: the appearance of a solid-like behavior in the linear viscoelastic domain, the limits of linear viscoelasticity, and the presence of stress overshoot in step shear tests. In particular, stress overshoot was investigated based on the tube concept of polymeric chains. Also, differences related to nano-particle geometry (platelet vs. spherical) were investigated based on a filler-network mechanism. Due to higher physical contacting probability, platelet particles can better interact and create a network structure, which dominates the rheological response. On the other hand, although spherical particles can limit the motion of polymeric chains under flow, a strong physical network was not formed. For platelets, scaling behavior was well described by fractal model which considers direct aggregation, and such scaling was not observed for spherical particles. The filler-network mechanism was validated by image analysis.

Url:
DOI: 10.1007/s00397-012-0655-5


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Relationships between linear and nonlinear shear response of polymer nano-composites</title>
<author>
<name sortKey="Hassanabadi, Hojjat Mahi" sort="Hassanabadi, Hojjat Mahi" uniqKey="Hassanabadi H" first="Hojjat Mahi" last="Hassanabadi">Hojjat Mahi Hassanabadi</name>
</author>
<author>
<name sortKey="Rodrigue, Denis" sort="Rodrigue, Denis" uniqKey="Rodrigue D" first="Denis" last="Rodrigue">Denis Rodrigue</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:192632C3A858FFEC31E626557CBF0B7916951A03</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1007/s00397-012-0655-5</idno>
<idno type="url">https://api.istex.fr/ark:/67375/VQC-7KHTZ73H-L/fulltext.pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002140</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002140</idno>
<idno type="wicri:Area/Istex/Curation">001F89</idno>
<idno type="wicri:Area/Istex/Checkpoint">000399</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000399</idno>
<idno type="wicri:doubleKey">0035-4511:2012:Hassanabadi H:relationships:between:linear</idno>
<idno type="wicri:Area/Main/Merge">000432</idno>
<idno type="wicri:Area/Main/Curation">000430</idno>
<idno type="wicri:Area/Main/Exploration">000430</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Relationships between linear and nonlinear shear response of polymer nano-composites</title>
<author>
<name sortKey="Hassanabadi, Hojjat Mahi" sort="Hassanabadi, Hojjat Mahi" uniqKey="Hassanabadi H" first="Hojjat Mahi" last="Hassanabadi">Hojjat Mahi Hassanabadi</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and CERMA, Université Laval, 1065 Avenue de la Médecine, G1V 0A6, Quebec, QC</wicri:regionArea>
<orgName type="university">Université Laval</orgName>
<placeName>
<settlement type="city">Québec (ville)</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">Canada</country>
</affiliation>
</author>
<author>
<name sortKey="Rodrigue, Denis" sort="Rodrigue, Denis" uniqKey="Rodrigue D" first="Denis" last="Rodrigue">Denis Rodrigue</name>
<affiliation wicri:level="4">
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Chemical Engineering and CERMA, Université Laval, 1065 Avenue de la Médecine, G1V 0A6, Quebec, QC</wicri:regionArea>
<orgName type="university">Université Laval</orgName>
<placeName>
<settlement type="city">Québec (ville)</settlement>
<region type="state">Québec</region>
</placeName>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Rheologica Acta</title>
<title level="j" type="abbrev">Rheol Acta</title>
<idno type="ISSN">0035-4511</idno>
<idno type="eISSN">1435-1528</idno>
<imprint>
<publisher ref="https://scientific-publisher.data.istex.fr/ark:/67375/H02-SWLMH5L1-1">Springer-Verlag</publisher>
<pubPlace>Berlin/Heidelberg</pubPlace>
<date type="published" when="2012">2012</date>
<biblScope unit="vol" from="51" to="51">51</biblScope>
<biblScope unit="issue" from="11" to="12">11-12</biblScope>
<biblScope unit="page" from="991">991</biblScope>
<biblScope unit="page" to="1005">1005</biblScope>
</imprint>
<idno type="ISSN">0035-4511</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0035-4511</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="Teeft" xml:lang="en">
<term>Acta</term>
<term>Anisometric particle</term>
<term>Caco3</term>
<term>Caco3 concentration</term>
<term>Carbon nanotube network</term>
<term>Cassagnau</term>
<term>Chain confinement</term>
<term>Chain dynamic</term>
<term>Characteristic time</term>
<term>Chem</term>
<term>Clay clay</term>
<term>Clay concentration</term>
<term>Clay particle</term>
<term>Concentration dependency</term>
<term>Concentration higher</term>
<term>Concentration range</term>
<term>Contact angle</term>
<term>Contact angle measurement</term>
<term>Continuous network</term>
<term>Critical concentration</term>
<term>Datum</term>
<term>Different sample</term>
<term>Different structure</term>
<term>Different temperature</term>
<term>Dispersion</term>
<term>Dispersion quality</term>
<term>Dynamic datum</term>
<term>Electrical conductivity</term>
<term>Entangled polymer</term>
<term>Entangled polymer solution</term>
<term>Ethylene vinyl acetate</term>
<term>Experimental time</term>
<term>Exponent</term>
<term>Filler</term>
<term>Financial support</term>
<term>First scenario</term>
<term>Fractal</term>
<term>Fractal dimension</term>
<term>Fractal model</term>
<term>Fractal network</term>
<term>Fractal structure</term>
<term>Frequency range</term>
<term>High concentration</term>
<term>High shear rate</term>
<term>Higher chain uptake</term>
<term>Higher clay concentration</term>
<term>Higher interaction</term>
<term>Interparticle interaction</term>
<term>Jancar</term>
<term>Krishnamoorti</term>
<term>Large difference</term>
<term>Linear datum</term>
<term>Linear viscoelasticity</term>
<term>Local fractal</term>
<term>Long time</term>
<term>Longest stress relaxation time</term>
<term>Macromolecule</term>
<term>Macromolecule anderson</term>
<term>Material structure</term>
<term>Matrix</term>
<term>Maximum stress</term>
<term>Modulus</term>
<term>More effective</term>
<term>Morphological characterization</term>
<term>Much stronger effect</term>
<term>Nanocomposites</term>
<term>Nanotube</term>
<term>Network structure</term>
<term>Nonlinear</term>
<term>Nonlinear datum</term>
<term>Nonlinear viscoelastic behavior</term>
<term>Nonlinear viscoelastic property</term>
<term>Nonterminal</term>
<term>Nonterminal behavior</term>
<term>Numerical simulation</term>
<term>Organoclay nanocomposites</term>
<term>Oscillatory measurement</term>
<term>Other hand</term>
<term>Overshoot</term>
<term>Particle</term>
<term>Particle interaction</term>
<term>Particle number</term>
<term>Particle size</term>
<term>Payne effect</term>
<term>Percolation</term>
<term>Percolation threshold</term>
<term>Phys</term>
<term>Phys chem</term>
<term>Plateau modulus</term>
<term>Platelet</term>
<term>Platelet particle</term>
<term>Polym</term>
<term>Polymer</term>
<term>Polymer chain</term>
<term>Polymer dynamic</term>
<term>Polymer layer</term>
<term>Polymer matrix</term>
<term>Polymer nanocomposite</term>
<term>Polymer nanocomposites</term>
<term>Polymeric chain</term>
<term>Relaxation</term>
<term>Relaxation behavior</term>
<term>Relaxation modulus</term>
<term>Relaxation time</term>
<term>Rheol</term>
<term>Rheol acta</term>
<term>Rheological</term>
<term>Rheological analysis</term>
<term>Rheological behavior</term>
<term>Rheological datum</term>
<term>Rheological property</term>
<term>Rheological response</term>
<term>Rheology</term>
<term>Same energetic attraction</term>
<term>Shape difference</term>
<term>Shear flow</term>
<term>Shear rate</term>
<term>Shear rate dependency</term>
<term>Shear transient</term>
<term>Shear transient test</term>
<term>Short dynamic</term>
<term>Significant change</term>
<term>Significant effect</term>
<term>Silicate nanocomposites</term>
<term>Similar concentration</term>
<term>Size difference</term>
<term>Southern clay product</term>
<term>Special attention</term>
<term>Specialty mineral</term>
<term>Spherical one</term>
<term>Spherical particle</term>
<term>Steady shear response</term>
<term>Steady state</term>
<term>Storage modulus</term>
<term>Strain dependence</term>
<term>Strain sweep</term>
<term>Strain sweep test</term>
<term>Stress increase</term>
<term>Stress overshoot</term>
<term>Stress relaxation time</term>
<term>Stress response</term>
<term>Structural analysis</term>
<term>Surface energy</term>
<term>Surface modification</term>
<term>Tangent point</term>
<term>Temperature independency</term>
<term>Terminal relaxation time</term>
<term>Terminal slope</term>
<term>Transient</term>
<term>Transient datum</term>
<term>Transition region</term>
<term>Tube concept</term>
<term>Tube model</term>
<term>Tube theory</term>
<term>Viscoelastic</term>
<term>Viscoelastic material</term>
<term>Viscoelastic property</term>
<term>Yurekli</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Abstract: Rheological analysis was used to understand the structure–property relations of polymer nano-composites based on ethylene vinyl acetate. Two geometrically different nano-particles (sphere of CaCO3 and platelet of montmorillonite) having the same energetic attractions with ethylene vinyl acetate were studied for concentrations between 2.5 and 15 wt%. Three phenomena were studied: the appearance of a solid-like behavior in the linear viscoelastic domain, the limits of linear viscoelasticity, and the presence of stress overshoot in step shear tests. In particular, stress overshoot was investigated based on the tube concept of polymeric chains. Also, differences related to nano-particle geometry (platelet vs. spherical) were investigated based on a filler-network mechanism. Due to higher physical contacting probability, platelet particles can better interact and create a network structure, which dominates the rheological response. On the other hand, although spherical particles can limit the motion of polymeric chains under flow, a strong physical network was not formed. For platelets, scaling behavior was well described by fractal model which considers direct aggregation, and such scaling was not observed for spherical particles. The filler-network mechanism was validated by image analysis.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Canada</li>
</country>
<region>
<li>Québec</li>
</region>
<settlement>
<li>Québec (ville)</li>
</settlement>
<orgName>
<li>Université Laval</li>
</orgName>
</list>
<tree>
<country name="Canada">
<region name="Québec">
<name sortKey="Hassanabadi, Hojjat Mahi" sort="Hassanabadi, Hojjat Mahi" uniqKey="Hassanabadi H" first="Hojjat Mahi" last="Hassanabadi">Hojjat Mahi Hassanabadi</name>
</region>
<name sortKey="Hassanabadi, Hojjat Mahi" sort="Hassanabadi, Hojjat Mahi" uniqKey="Hassanabadi H" first="Hojjat Mahi" last="Hassanabadi">Hojjat Mahi Hassanabadi</name>
<name sortKey="Rodrigue, Denis" sort="Rodrigue, Denis" uniqKey="Rodrigue D" first="Denis" last="Rodrigue">Denis Rodrigue</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/ChansonRoland/explor/ChansonRolandV6/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000430 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000430 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/ChansonRoland
   |area=    ChansonRolandV6
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:192632C3A858FFEC31E626557CBF0B7916951A03
   |texte=   Relationships between linear and nonlinear shear response of polymer nano-composites
}}

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Mon Jun 21 12:12:57 2021. Site generation: Tue Jun 22 14:52:22 2021